

Conexión de motores para micro:bit

1. Introducción

La micro:bit es una pequeña placa programable utilizada para enseñar programación y electrónica a estudiantes. Puede ser programada para controlar diferentes componentes, incluidos motores.

Conectar motores a una placa micro:bit puede ser una forma emocionante de agregar movimiento a tus proyectos. Sin embargo, la placa micro:bit no está diseñada para manejar directamente motores de gran potencia, por lo que es importante utilizar componentes adicionales, como una placa controladora de motores y una fuente de alimentación externa. ¡Aquí te mostramos cómo podrías hacerlo!

2. Materiales necesarios

Placa micro:bit Motores Portapila (para suministrar energía a los motores) Placa controladora de motores (Kitronik)

Los motores de corriente continua (CC) pueden variar en tamaño y potencia, desde pequeños motores en juguetes y electrodomésticos, hasta grandes mecanismos que impulsan vehículos, trenes y ascensores.

Los motores CC tienen la ventaja de regular su velocidad fácilmente y también su sentido de giro. Es decir, tienen un control completo de avance, retroceso y parada (frenado).

En la imagen vemos motores CC compatibles con la placa controladora de motores para micro:bit: <u>AQUÍ</u>

Se debe alimentar la placa controladora de motores con el portapilas, conectando el rojo en la entrada RED + y el negro en la entrada BLACK -.

A continuación se deben conectar el o los motores CC a la placa en las entradas MOTOR 1 / MOTOR 2.

La energía requerida por los motores es extraída de la placa controladora, por lo que no requiere nuevas conexiones.

4. Programación de motores

Para utilizar nuestra placa controladora de motores debemos agregar la siguiente extensión en MakeCode:

Se debe seleccionar el ícono de engranaje "Extensiones" en la parte superior derecha del editor o luego de las categorías.

Una vez en la sección de Extensiones, se ingresa "kitronik motor driver" en el buscador.

Allí se debe seleccionar el controlador y aparecerá lo siguiente en MakeCode:

MakeCode añadirá una nueva categoría en su entorno denominado "Motor Driver" con las categorías específicas usadas para dar instrucciones a la placa controladora Kitronik.

Ceibal comicro:bit

4.1 Ejemplos de programación para controlar un motor

Al presionar el botón A se activa el motor 1. Rota "hacia adelante" con una velocidad de 50%.

Al presionar B se activa el motor 1. Rota "hacia atrás" con una velocidad de 75%.

Al presionar A+B se detiene el motor 1.

	± B	locks Js JavaScript 🗸	*	<
<	Search Q	on button A 🗢 pressed	+	+ +
	Basic	motor 1 - on direction forward - speed	50	
	Music			
	Led	on button A+B - pressed		
	3 Motor Driver	turn off motor 1 🔹		
	••• Settings			
	Radio			
	C ⁴ Loops	on button B - pressed	-	
	🔀 Logic	motor 1 - on direction reverse - speed	75	
	Variables			
	🖬 Math			
- 1	G Extensions			

Ceibal Omicro:bit

4.2. Ejemplos de programación para controlar dos motores en simultáneo

Este programa es un loop que enciende ambos motores al mismo tiempo a una velocidad de 80%.

Luego de 5 segundos los motores se apagan.

2 segundos después los motores vuelven a encenderse.

4.3. Ejemplo de control remoto de eje de ruedas

MATERIALES:

- 2 placas micro:bit.
- 2 motores continuos
- 2 ruedas

CÓDIGO DE CONTROL REMOTO				
al iniciar	al presionarse el botón 🗛 🔻			
radio establecer grupo 26	radio enviar número 2			
al presionarse el botón B ▼	al presionarse el botón A+B 🔻			
	radio enviar numero 0			

La placa controladora controla el movimiento de la placa con motores y ruedas.

Al presionar el botón A las ruedas giran con igual velocidad (30%) en un sentido.

Al presionar el botón B las ruedas giran con igual velocidad (30%) en el otro sentido.

Al presionar A+B las ruedas se detienen.

5. Consideraciones preliminares

En esta ficha te explicamos cómo conectar tus motores a la placa micro:bit y te mostramos tres ejemplos de programación de motores. Te invitamos a que comiences a experimentar siguiendo este paso a paso.

¡Diviértete experimentando con tus motores y micro:bit!

¡Compartí tus ideas y divertite con micro:bit!

Sumate a la comunidad micro:bit en CREA haciendo clic <u>AQUÍ</u>.

- microbit.ceibal.edu.uy
- ceibalsteam_uy
- G CeibalSTEAMuy
- CeibalSTEAM_UY